



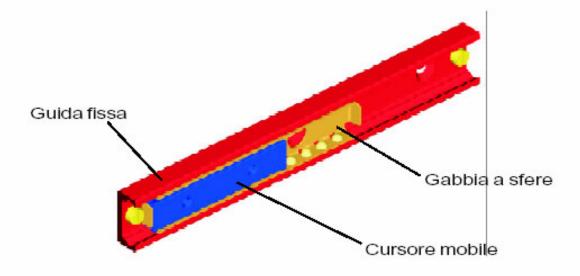
# **ROLLON**

# INDICE

| EASY RAIL: PIÙ SEMPLICE, PIÙ AFFIDABILE | C4  |
|-----------------------------------------|-----|
| PRESTAZIONI GENERALI                    | C5  |
| CODICI DI ORDINAZIONE                   | C6  |
| ESEMPI DI UTILIZZO                      | C7  |
| DATI TECNICI                            | C8  |
| CONFIGURAZIONI STANDARD                 | C10 |
| VERIFICA AL CARICO STATICO              | C12 |
| VERIFICA DELLA DURATA                   | C13 |
| ACCOPPIAMENTI GUIDE/CURSORI             | C13 |
| COEFFICIENTE DI ATTRITO                 | C13 |
| PRECISIONE LINEARE                      | C13 |
| VELOCITÀ                                | C13 |
| CONSIGLI APPLICATIVI                    | C14 |
| TEMPERATURA                             | C14 |
| PROTEZIONE CORROSIVA                    | C14 |
| LUBRIFICAZIONE                          | C14 |

# WW $\sqrt{N}$ m [P) (0)(0)(ð (6) [0]S (C) M (0)

# EASY RAIL: PIU' SEMPLICE, PIU' AFFIDABILE


EASY...facile, semplice, lo dice la parola stessa.La semplicità è infatti la caratteristica peculiare di questa famiglia di guide lineari in acciaio, parte integrante e "viva" dell'intera gamma di prodotti che ROLLON offre a coloro che operano nel mercato del lineare.

Semplicità: questo concetto è ampiamente giustificato dal modo molto facile e versatile in cui queste guide risolvono problemi estremamente diversi ed apparentemente complessi di movimentazione lineare. Dovunque occorranocompattezza di ingombri, estrema scorrevolezza, capacità di carico, unite ad una significativa economicità, questa famiglia trova il suo ideale impiego. Applicazioni dove l'affidabilità ha la meglio su altri parametri, dove la precisione assoluta lascia il posto alla facilità di installazione, pur restando nel campo del decimo di millimetro, dove l'automazione deve intendersi "fine linea" o posizionamento di massima, sono i settori dove questa famiglia esprime il meglio di se stessa.

Cinque sezioni, rispettivamente pari a 22-28-35-43-63 mm, con capacità di carico che raggiungono le migliaia di chili, permettono di coprire agevolmente le più diversificate richieste, grazie alle oltre trecento possibili varianti. I tre componenti di base sono laguida fissa, il cursore mobile e la gabbia a sfere che, opportunamente assemblati tra loro, danno vita a tantissime combinazioni, in grado di risolvere al meglio qualsiasi specifica esigenza applicativa, sia in termini di carico applicato che di corsa. Una particolare attenzione è stata data alleoperazioni di montaggio che, anche grazie all'impiego di viti a testa svasata per unesatto posizionamento ed autoallineamento della guida fissa, risultano estremamente semplici e sicure, con estremo risparmio di tempo! Inoltre, il passo fori costante sia di guide che cursori agevola al massimo l'utilizzatore che non ha più il "problema" di possibili variazioni di valori a seconda delle lunghezze utilizzate.

La semplicità è la caratteristica più immediata della famiglia EASY RAIL, ma anche altre caratteristiche particolarmente importanti devono essere menzionate parlando di queste guide. Innanzitutto la compattezza, resa possibile dal fatto che il cursore scorre sempre nelle parte interna della guida, caratteristica comune all'intera produzione ROLLON, quindi la robustezza e l'affidabilità (le piste di scorrimento di guide e cursori sono interamente temprate), che rendono sicuro e durevole l'impiego anche in condizioni particolarmente severe di utilizzo (a tal proposito sottolineamo che le sfere, avendo un diametro molto consistente, sono meno soggette a problemi dovuti a sporcizia, polvere ecc.).

I campi applicativi più comuni spaziano dai movimenti di sportellerie infortunistiche, alle traslazioni principali nelle apparecchiature elettromedicali, ai manipolatori ecc., praticamente ovunque serva una guida robusta, prestante, affidabile, compatta e...**EASY** da montare.



ß

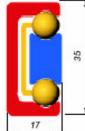
# PRESTAZIONI GENERALI

SERIE "SN22"



| Lunghezza       | la i         | Capaci           | ità di c               | arico                  |            | Lunghezza       | za Capaci |      |                        | arico                  | ranco.     |
|-----------------|--------------|------------------|------------------------|------------------------|------------|-----------------|-----------|------|------------------------|------------------------|------------|
| Cursore<br>[mm] | Corad<br>[N] | C <sub>oax</sub> | M <sub>x</sub><br>[Nm] | M <sub>y</sub><br>[Nm] | M,<br>[Nm] | Cursore<br>[mm] | Cornel    | Coax | M <sub>x</sub><br>[Nm] | M <sub>y</sub><br>[Nm] | M,<br>[Nm] |
| 40              | 1320         | 924              | 8                      | 6                      | 9          | 130             | 4290      | 3003 | 26                     | 65                     | 93         |
| 60              | 1980         | 1386             | 12                     | 14                     | 20         | 210             | 6930      | 4851 | 42                     | 170                    | 243        |
| 80              | 2640         | 1848             | 16                     | 25                     | 35         | 290             | 9670      | 6699 | 58                     | 324                    | 463        |

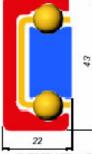
Lunghezza Guide [mm] 130, 210, 290, 370, 450, 530, 610, 690, 770, 850, 930, 1010, 1170


SERIE "SN28"



| Lunghezza       |       | Capac                   | ità di c               | агісо                  |                        | Lunghezza       | Capacità di carico                                            |       |                        | Capacità di carico |         |  |  |  |
|-----------------|-------|-------------------------|------------------------|------------------------|------------------------|-----------------|---------------------------------------------------------------|-------|------------------------|--------------------|---------|--|--|--|
| Cursore<br>[mm] | Cond  | C <sub>nax</sub><br>[N] | M <sub>x</sub><br>[Nm] | M <sub>y</sub><br>[Nm] | M <sub>x</sub><br>[Nm] | Cursore<br>[mm] | Corned Coax M <sub>x</sub> M <sub>y</sub> [NI] [NIII] [NIIII] |       | M <sub>x</sub><br>[Nm] |                    |         |  |  |  |
| 60              | 3480  | 2436                    | 28                     | 24                     | 35                     | 290             | 16820                                                         | 11774 | 136                    | 569                | 813     |  |  |  |
| 80              | 4640  | 3248                    | 38                     | 43                     | 62                     | 370             | 21460                                                         | 15022 | 174                    | 926                | 1323    |  |  |  |
| 130             | 7540  | 5278                    | 61                     | 114                    | 163                    | 450             | 26100                                                         | 18270 | 211                    | 1370               | 1958    |  |  |  |
| 210             | 12180 | 8526                    | 98                     | 298                    | 426                    | 10 9250 N       | 100 0 PM                                                      |       |                        |                    | W 75655 |  |  |  |

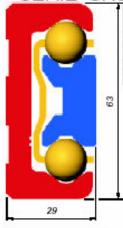
Lunghezza Guide [mm] 130, 210, 290, 370, 450, 530, 610, 690, 770, 850, 930, 1010, 1170, 1330, 1490, 1650


SERIE "SN35"



| Lunghezza       | Capacità di carico |                         |                        |                        | 10000                  | Lunghezza       | S. 12 11                 | Capacità di carico |                        |                        |            |  |
|-----------------|--------------------|-------------------------|------------------------|------------------------|------------------------|-----------------|--------------------------|--------------------|------------------------|------------------------|------------|--|
| Cursore<br>[mm] | Cond               | C <sub>sax</sub><br>[N] | M <sub>x</sub><br>[Nm] | M <sub>y</sub><br>[Nm] | M <sub>x</sub><br>[Nm] | Cursore<br>[mm] | C <sub>orad</sub><br>[N] | Corx               | M <sub>x</sub><br>[Nm] | M <sub>y</sub><br>[Nm] | M,<br>[Nm] |  |
| 130             | 9750               | 6825                    | 95                     | 148                    | 211                    | 450             | 33750                    | 23625              | 327                    | 1772                   | 2531       |  |
| 210             | 15750              | 11025                   | 153                    | 386                    | 551                    | 530             | 39750                    | 27825              | 385                    | 2458                   | 3511       |  |
| 290             | 21750              | 15225                   | 211                    | 736                    | 1051                   | 610             | 45750                    | 32025              | 444                    | 3256                   | 4651       |  |
| 370             | 27750              | 19425                   | 269                    | 1198                   | 1711                   |                 |                          |                    |                        |                        |            |  |

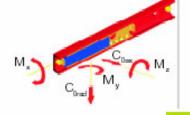
Lunghezza Guide [mm] 290, 370, 450, 530, 610, 690, 770, 850, 930, 1010, 1170, 1330, 1490, 1650, 1810


SERIE "SN43"



| Lunghezza       | Capacità di carico |                  |                        |            | Lunghezza              | Capacità di carico |              |                  |                        |            |                        |
|-----------------|--------------------|------------------|------------------------|------------|------------------------|--------------------|--------------|------------------|------------------------|------------|------------------------|
| Cursore<br>[mm] | Cond<br>[N]        | C <sub>0ex</sub> | M <sub>x</sub><br>[Nm] | My<br>[Nm] | M <sub>z</sub><br>[Nm] | Cursore<br>[mm]    | Const<br>[N] | C <sub>0ex</sub> | M <sub>x</sub><br>[Nm] | My<br>[Nm] | M <sub>z</sub><br>[Nm] |
| 130             | 13910              | 9737             | 172                    | 211        | 301                    | 450                | 48150        | 33705            | 595                    | 2528       | 3611                   |
|                 | 22470              |                  |                        | 551        | 786                    | 530                | 56710        | 39697            | 701                    | 3507       | 5009                   |
| 290             | 31030              | 21721            | 383                    | 1050       | 1500                   | 610                | 65270        | 45689            | 806                    | 4645       | 6636                   |
| 370             | 39590              | 27713            | 489                    | 1700       | 2441                   | 24 4000000 00      | 7.181.90     |                  | 1,57,702,140           | 1864       | -775-64                |

Lunghezza Guide [mm] 290, 370, 450, 530, 610, 690, 770, 850, 930, 1010, 1170, 1330, 1490, 1650, 1810, 1970


· SERIE "SN63"



| Lunghezza       |        |                  |                        | www.ii                 | Lunghezza              | Capacità di carico |                          |       |                        |                        |                        |
|-----------------|--------|------------------|------------------------|------------------------|------------------------|--------------------|--------------------------|-------|------------------------|------------------------|------------------------|
| Cursore<br>[mm] | Cond N | C <sub>oex</sub> | M <sub>x</sub><br>[Nm] | M <sub>y</sub><br>[Nm] | M <sub>z</sub><br>[Nm] | Cursore<br>[mm]    | C <sub>orad</sub><br>[N] | Conx  | M <sub>x</sub><br>[Nm] | M <sub>y</sub><br>[Nm] | M <sub>x</sub><br>[Nm] |
| 130             | 26000  | 18200            | 443                    | 394                    | 563                    | 450                | 90000                    | 63000 | 1534                   | 4725                   | 6750                   |
| 210             | 42000  | 29400            | 716                    | 1029                   | 1470                   | 530                | 1060000                  | 74200 | 1807                   | 6554                   | 9363                   |
| 290             | 58000  | 40600            | 989                    | 1962                   | 2803                   | 610                | 122000                   | 85400 | 2079                   | 9682                   | 12403                  |
| 370             | 74000  | 51800            | 1261                   | 3194                   | 4563                   |                    |                          |       |                        |                        |                        |

Lunghezza Guide [mm] 610, 690, 770, 850, 930, 1010, 1170, 1330, 1490, 1650, 1810, 1970

Per i Codici d'Ordinazione, vedi pag. C6. Per ulteriori dati tecnici, vedi pag. C8-C11



Cat 41-38

# CODICI DI ORDINAZIONE

W Le guide lineari a sfere serie SN sono costituite dalla combinazione dei seguenti elementi: Una guida in acciaio trafilato con piste di rotolamento delle sfere temprate ad induzione. W Può essere definita "fissa", poichè è normalmente avvitata alla parte fissa della macchina, mediante viti a testa svasata. W - Uno o più *cursori* in acciaio trafilato con piste di rotolamento delle sfere temprate ad induzione. Il cursore può essere definito "mobile", poichè è normalmente fissato alla parte mobile della macchina e trasmette il carico alla guida attraverso la doppia fila di sfere. Il fissaggio alla parte mobile avviene attraverso fori filettati. - Una o più *gabbie* in **robusta lamiera d'acciaio**, ognuna con una doppia ind alle precisione in acciaio da cuscinetti. Le sfere trasmettono il carico dal cursore alla guida, Una o più gabbie in robusta lamiera d'acciaio, ognuna con una doppia fila di sfere di alta Le tipologie realizzabili all'interno della famiglia EASY RAIL sono le seguenti (per qualsiasi altra informazione relativa alle versioni disponibili, contattare il nostro Servizio Tecnico): SERIE "SN" CON CURSORE SINGOLO: (in E' la condizione "standard" (nelle pag. da C8 a C11 ci si riferirà sempre a questa situazione). cioè quella in cui **all'interno della guida fissa scorre un solo cursore**, dentro un'unica gabbia. K/2 н K/2 **⊘** ⊕ ( L = S + H + K Codice di ordinazione: SN 35 290 430 (0) Serie e dimensione Lunghezza Corsa H Lunghezza guida L caratteristica cursore S - SERIE "SN" CON CURSORI MULTIPLI "INDEPENDENTI": All'interno della guida fissa scorrono due, o più, cursori, ognuno in una propria gabbia. K/2 K/2 Ŋ  $L = 2 \times (S+H) + K$ Codice di ordinazione: 330 SN 43 (C) Serie e dimensione Numero di Lunghezza di Corsa H di Lunghezza caratteristica cursori ciascun cursore S ciascun cursore S guida L - SERIE "SN" CON CURSORI MULTIPLI "SINCRONIZZATI": All'interno della guida fissa scorrono due, o più, cursori, tutti dentro un'unica gabbia. K/2 н S. S,  $\Theta \square \Theta$ L = S'+ H + K Codice di ordinazione: 850 SN 63 (370+290 330 Per tutti i dati tecnici, Lunghezza di Lunghezza "cursore Serie e Corsa H Lunghezza vedi pag. C8-C11 apparente" St ciascun cursore guida L dimensione caratteristica S, ed S.

# **ESEMPI DI UTILIZZO**

Rispetto al carico esterno, la guida può essere utilizzata in ambedue le posizioni mostrate nelle figure a lato. E' necessario ricordare che quando è impiegata nel modo (2), cioè "assialmente", la capacità di carico C<sub>0ax</sub> risulta essere pari al 70% della capacità radiale C<sub>0rad</sub> (vedi anche **Verifica al carico statico** a pag. C12). La guida e il cursore devono essere fissati, mediante tutti gli appositi fori, a strutture rigide e piane in modo che guida e cursore non risultino sollecitati a flessione, assumendo la rigidità della parte a cui sono fissati. Il numero di fori di fissaggio previsto per le guide di lunghezza standard, utilizzando viti di classe di resistenza 10.9 minimo, assicura il sostentamento dei carichi dichiarati. Può essere comunque utile prevedere una spalla di sostegno asolata come indicato nel disegno a lato, in quanto vengono ridotte le sollecitazioni a taglio delle viti e aumenta la rigidità dell'insieme. Soluzioni a guida incassata oppure con appoggio non regolabile, come quelle illustrate negli schemi a fianco, non garantiscono l'appoggio e quindi il supporto della guida, a causa dell'utilizzo di viti di fissaggio a testa svasata.

 $\nabla V$ 

 $\mathbb{W}$ 

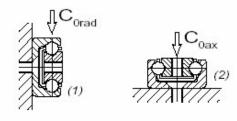
G

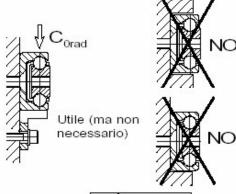
 $\mathbb{Q}$ 

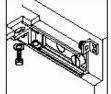
S

C

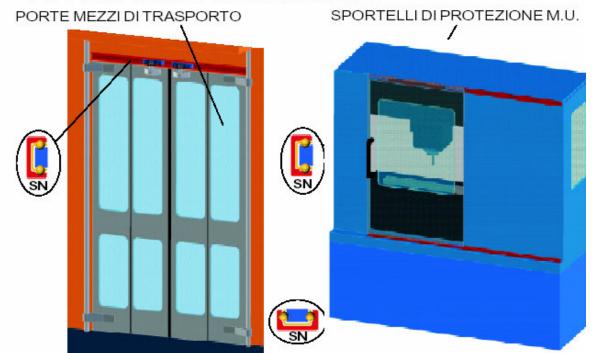
M


(2)


ß


(0)

f


Le battute di fine corsa debbono essere realizzate sull'elemento mobile della macchina. Le viti che si trovano alle estremità delle guide servono soltanto ad evitare lo smontaggio della guida lineare e **non sono idonei** a realizzare il fine corsa della macchina. Si consiglia inoltre di asolare i fori di fissaggio sulla parte della macchina collegata al cursore (vedi dis. a lato).

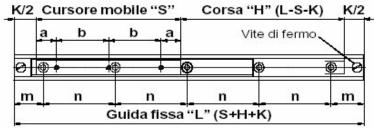


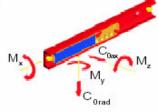




### APPLICAZIONI REALIZZABILI:




Altri possibili settori applicativi sono le macchine d'imballaggio, apparecchiature elettromedicali ecc.


Cat. 41-38

C7

# **DATI TECNICI**

L'opportuno accoppiamento tra le diverse lunghezze disponibili di cursori e guide (vedi Regole "chiave"), rende possibile l'ottenimento di una gamma più che completa di corse realizzabili (per i Codici di ordinazione, vedi pag. C6, per le configurazioni standard vedi pag. C10-11).





#### REGOLE "CHIAVE":

 $\mathbb{W}$ 

 $\nabla N$ 

 $\mathbb{W}$ 

E

[b]

(0)

(0)

(g)

(2)

Ŋ

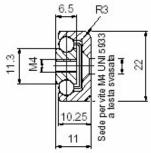
S

C

M

(2)

f


0

f

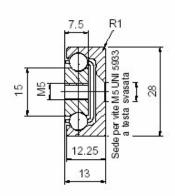
- Per garantire l'accesso a tutti i fori di fissaggio, è necessario verficare la seguente relazione:
  S ≤ L/2 K (tutti i valori di S, L e K sono indicati nelle tabelle successive).
- 2. Ricordare che: H = L S K, che equivale a dire: L = S + H + K (la lunghezza della guida L è quindi da intendersi sempre come la somma della lunghezza del cursore S, più il valore della corsa H e quello della costante K).
- Per ottenere sempre la massima qualità di scorrimento è necessario che sia verificata anche la seguente relazione:

H≤7S. Per cui, la corsa H non deve mai essere superiore al 700% della lunghezza del cursore S.

## SERIE "SN22"



| Esempiodi | Codice d | Ordin | nazione: |  |
|-----------|----------|-------|----------|--|
|-----------|----------|-------|----------|--|


- Cursore mobile S: 210 mm; - Corsa richiesta H: 610 mm;
- Guida fissa L: 210 + 610 + 30 = 850 mm. Il codice corretto sarà: SN22-210-610-850 vedi pag. C6 per la "costruzione" dei codici).

|   | Ci        | ırsore    | mobile | 9          |                          | Capa             | cita di c              | arico                  | 67                     | 1 =   |
|---|-----------|-----------|--------|------------|--------------------------|------------------|------------------------|------------------------|------------------------|-------|
|   | S<br>[mm] | a<br>[mm] | [mm]   | N.<br>fori | C <sub>Orad</sub><br>[N] | C <sub>0ax</sub> | M <sub>x</sub><br>[Nm] | M <sub>y</sub><br>[Nm] | M <sub>z</sub><br>[Nm] | dom   |
| Г | 40        | 10        | 20     | 2          | 1320                     | 924              | 8                      | 6                      | 9                      | Φ     |
|   | 60        | 10        | 20     | 3          | 1980                     | 1386             | 12                     | 14                     | 20                     | los - |
|   | 80        | 10        | 20     | 4          | 2640                     | 1848             | 16                     | 25                     | 35                     | I≝⊨   |
|   | 130       | 25        | 80     | 2          | 4290                     | 3003             | 26                     | 65                     | 93                     | O C   |
|   | 210       | 25        | 80     | 3          | 6930                     | 4851             | 42                     | 170                    | 243                    | Sco   |
|   | 290       | 25        | 80     | 4          | 9570                     | 6699             | 58                     | 324                    | 463                    | 9 ←   |

|           | Gu        | ida fis:  | sa         |           |
|-----------|-----------|-----------|------------|-----------|
| L<br>[mm] | m<br>[mm] | n<br>[mm] | N.<br>fori | K<br>[mm] |
| 130       | 25        | 80        | 2          | 30        |
| 210       | 25        | 80        | 3          | 30        |
| 290       | 25        | 80        | 4          | 30        |
| 370       | 25        | 80        | 5          | 30        |
| 450       | 25        | 80        | 6          | 30        |
| 530       | 25        | 80        | 7          | 30        |
| 610       | 25        | 80        | 8          | 30        |

|           | sa         | ida fiss  | Gui       |           |
|-----------|------------|-----------|-----------|-----------|
| K<br>[mm] | N.<br>fori | n<br>[mm] | m<br>[mm] | L<br>[mm] |
| 30        | 9          | 80        | 25        | 690       |
| 30        | 10         | 80        | 25        | 770       |
| 30        | 11         | 80        | 25        | 850       |
| 30        | 12         | 80        | 25        | 930       |
| 30        | 13         | 80        | 25        | 010       |
| 30        | 15         | 80        | 25        | 170       |

# SERIE "SN28"



| - 1 | Cı        | irsore    | mobile    | 9          | 1000                      | Capa                    | cità di c              | arico                  | 2 30000                | iti      |  |
|-----|-----------|-----------|-----------|------------|---------------------------|-------------------------|------------------------|------------------------|------------------------|----------|--|
|     | S<br>[mm] | a<br>[mm] | b<br>[mm] | N.<br>fori | C <sub>0ract</sub><br>[N] | C <sub>Oax</sub><br>[N] | M <sub>x</sub><br>[Nm] | M <sub>y</sub><br>[Nm] | M <sub>z</sub><br>[Nm] | obile    |  |
|     | 60        | 10        | 20        | 3          | 3480                      | 2436                    | 28                     | 24                     | 35                     | E        |  |
| -   | 80        | 10        | 20        | 4          | 4640                      | 3248                    | 38                     | 43                     | 62                     | <u>e</u> |  |
|     | 130       | 25        | 80        | 2          | 7540                      | 5278                    | 61                     | 114                    | 163                    | S =      |  |
| - [ | 210       | 25        | 80        | 3          | 12180                     | 8526                    | 98                     | 298                    | 426                    | 5 =      |  |
|     | 290       | 25        | 80        | 4          | 16820                     | 11774                   | 136                    | 569                    | 813                    | 9.0      |  |
|     | 370       | 25        | 80        | 5          | 21460                     | 15022                   | 174                    | 926                    | 1323                   | 8 5      |  |
| - [ | 450       | 25        | 80        | 6          | 26100                     | 18270                   | 211                    | 1370                   | 1958                   | Ū -      |  |

| 20.50     | Gu        | ida fis   | sa         | an an i   |
|-----------|-----------|-----------|------------|-----------|
| L<br>[mm] | m<br>[mm] | n<br>[mm] | N.<br>fori | K<br>[mm] |
| 130       | 25        | 80        | 2          | 40        |
| 210       | 25        | 80        | 3          | 40        |
| 290       | 25        | 80        | 4          | 40        |
| 370       | 25        | 80        | 5          | 40        |
| 450       | 25        | 80        | 6          | 40        |
| 530       | 25        | 80        | 7          | 40        |
| 610       | 25        | 80        | 8          | 40        |
| 690       | 25        | 80        | 9          | 40        |

|           | Gu        | ida fis   | sa         |           | P 3      |
|-----------|-----------|-----------|------------|-----------|----------|
| L<br>[mm] | m<br>[mm] | n<br>[mm] | N.<br>fori | K<br>[mm] | l l      |
| 770       | 25        | 80        | 10         | 40        | co<br>co |
| 850       | 25        | 80        | 11         | 40        | is       |
| 930       | 25        | 80        | 12         | 40        | to to    |
| 1010      | 25        | 80        | 13         | 40        | 73       |
| 1170      | 25        | 80        | 15         | 40        | gui,     |
| 1330      | 25        | 80        | 17         | 40        | 0 6      |
| 1490      | 25        | 80        | 19         | 40        | 80       |
| 1650      | 25        | 80        | 21         | 40        | σ ←      |

# SERIE "SN35"

 $\mathbb{W}$ 

 $\mathbb{W}$ 

**W** 

E

 $\mathbb{M}$ 

 $\begin{bmatrix} 0 \end{bmatrix}$ 

0

ľ

0

**@** 

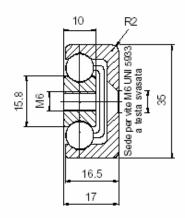
(2)

C

Ŋ

S

C

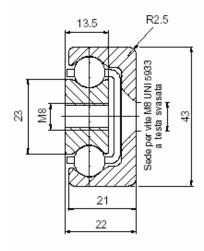

@

ß

f

0

f



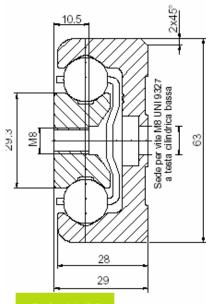

| Cu   | rsore | mobile |      | Capacità di carico |       |                |                |      |
|------|-------|--------|------|--------------------|-------|----------------|----------------|------|
| S    | a     | b      | N.   | Corad              | Coax  | M <sub>x</sub> | M <sub>y</sub> | Mz   |
| [mm] | [mm]  | [mm]   | fori | [N]                | [N]   | [Nm]           | [Nm]           | [Nm] |
| 130  | 25    | 80     | 2    | 9750               | 6825  | 95             | 148            | 211  |
| 210  | 25    | 80     | 3    | 15750              | 11025 | 153            | 386            | 551  |
| 290  | 25    | 80     | 4    | 21750              | 15225 | 211            | 736            | 1051 |
| 370  | 25    | 80     | 5    | 27750              | 19425 | 269            | 1198           | 1711 |
| 450  | 25    | 80     | 6    | 33750              | 23625 | 327            | 1772           | 2531 |
| 530  | 25    | 80     | 7    | 39750              | 27825 | 385            | 2458           | 3511 |
| 610  | 25    | 80     | 8    | 45750              | 32025 | 444            | 3256           | 4651 |

|       | Gu   | ida fis | sa   |      |      | Gu   | ida fis | sa   |      |
|-------|------|---------|------|------|------|------|---------|------|------|
| L     | m    | n       | N.   | K    | L    | m    | n       | N.   | K    |
| [m m] | [mm] | [mm]    | fori | [mm] | [mm] | [mm] | [mm]    | fori | [mm] |
| 290   | 25   | 80      | 4    | 50   | 930  | 25   | 80      | 12   | 50   |
| 370   | 25   | 80      | 5    | 50   | 1010 | 25   | 80      | 13   | 50   |
| 450   | 25   | 80      | 6    | 50   | 1170 | 25   | 80      | 15   | 50   |
| 530   | 25   | 80      | 7    | 50   | 1330 | 25   | 80      | 17   | 50   |
| 610   | 25   | 80      | 8    | 50   | 1490 | 25   | 80      | 19   | 50   |
| 690   | 25   | 80      | 9    | 50   | 1650 | 25   | 80      | 21   | 50   |
| 770   | 25   | 80      | 10   | 50   | 1810 | 25   | 80      | 23   | 50   |
| 850   | 25   | 80      | 11   | 50   |      |      |         |      |      |

# Peso guidafissa: Peso cursoremobile: 2.5 g/mm

# SERIE "SN43"




| Cu        | rsore     | mobile    | 9          | Capacità di carico       |                         |                        |                        |                        |
|-----------|-----------|-----------|------------|--------------------------|-------------------------|------------------------|------------------------|------------------------|
| S<br>[mm] | a<br>[mm] | b<br>[mm] | N.<br>fori | C <sub>Orad</sub><br>[N] | C <sub>0ax</sub><br>[N] | M <sub>x</sub><br>[Nm] | M <sub>y</sub><br>[Nm] | M <sub>z</sub><br>[Nm] |
| 130       | 25        | 80        | 2          | 13910                    | 9737                    | 172                    | 211                    | 301                    |
| 210       | 25        | 80        | 3          | 22470                    | 15729                   | 278                    | 551                    | 786                    |
| 290       | 25        | 80        | 4          | 31030                    | 21721                   | 383                    | 1050                   | 1500                   |
| 370       | 25        | 80        | 5          | 39590                    | 27713                   | 489                    | 1709                   | 2441                   |
| 450       | 25        | 80        | 6          | 48150                    | 33705                   | 595                    | 2528                   | 3611                   |
| 530       | 25        | 80        | 7          | 56710                    | 39697                   | 701                    | 3507                   | 5009                   |
| 610       | 25        | 80        | 8          | 65270                    | 45689                   | 806                    | 4645                   | 6636                   |

|       | Gu   | ida fis | sa   |      |      | Gu   | ida fis | sa   |      |
|-------|------|---------|------|------|------|------|---------|------|------|
| L     | m    | n       | N.   | K    | L    | m    | n       | N.   | K    |
| [m m] | [mm] | [mm]    | fori | [mm] | [mm] | [mm] | [mm]    | fori | [mm] |
| 290   | 25   | 80      | 4    | 50   | 930  | 25   | 80      | 12   | 50   |
| 370   | 25   | 80      | 5    | 50   | 1010 | 25   | 80      | 13   | 50   |
| 450   | 25   | 80      | 6    | 50   | 1170 | 25   | 80      | 15   | 50   |
| 530   | 25   | 80      | 7    | 50   | 1330 | 25   | 80      | 17   | 50   |
| 610   | 25   | 80      | 8    | 50   | 1490 | 25   | 80      | 19   | 50   |
| 690   | 25   | 80      | 9    | 50   | 1650 | 25   | 80      | 21   | 50   |
| 770   | 25   | 80      | 10   | 50   | 1810 | 25   | 80      | 23   | 50   |
| 850   | 25   | 80      | 11   | 50   | 1970 | 25   | 80      | 25   | 50   |

| Peso cursore mobile: | 5.0 g/mm |
|----------------------|----------|

| Peso guida fissa:<br>2.6 g/mm |
|-------------------------------|
|-------------------------------|

# SERIE "SN63"



|   | Cu   | rsore | mobile | 9    | Capacità di carico |       |                |      |       |
|---|------|-------|--------|------|--------------------|-------|----------------|------|-------|
| Г | S    | а     | p      | N.   | C <sub>0rad</sub>  | Coax  | M <sub>x</sub> | My   | Mz    |
| L | [mm] | [mm]  | [mm]   | fori | [N]                | [N]   | [Nm]           | [Nm] | [Nm]  |
|   | 130  | 25    | 80     | 2    | 26000              | 18200 | 443            | 394  | 563   |
|   | 210  | 25    | 80     | 3    | 42000              | 29400 | 716            | 1029 | 1470  |
|   | 290  | 25    | 80     | 4    | 58000              | 40600 | 989            | 1962 | 2803  |
|   | 370  | 25    | 80     | 5    | 74000              | 51800 | 1261           | 3194 | 4563  |
|   | 450  | 25    | 80     | 6    | 90000              | 63000 | 1534           | 4725 | 6750  |
|   | 530  | 25    | 80     | 7    | 106000             | 74200 | 1807           | 6554 | 9363  |
|   | 610  | 25    | 80     | 8    | 122000             | 85400 | 2079           | 8682 | 12403 |

| Guida fissa |      |      |      |      |      | Gu   | ida fis | sa   |      |
|-------------|------|------|------|------|------|------|---------|------|------|
| L           | m    | n    | N.   | K    | L    | m    | n       | N.   | K    |
| [m m]       | [mm] | [mm] | fori | [mm] | [mm] | [mm] | [mm]    | fori | [mm] |
| 610         | 25   | 80   | 8    | 80   | 1170 | 25   | 80      | 15   | 80   |
| 690         | 25   | 80   | 9    | 80   | 1330 | 25   | 80      | 17   | 80   |
| 770         | 25   | 80   | 10   | 80   | 1490 | 25   | 80      | 19   | 80   |
| 850         | 25   | 80   | 11   | 80   | 1650 | 25   | 80      | 21   | 80   |
| 930         | 25   | 80   | 12   | 80   | 1810 | 25   | 80      | 23   | 80   |
| 1010        | 25   | 80   | 13   | 80   | 1970 | 25   | 80      | 25   | 80   |

ia: Pesocursore mobile: 6.9 g/mm

Peso guida fissa: 6.1 g/mm

# CONFIGURAZIONI STANDARD

| $\mathbb{W}$ | 0   |
|--------------|-----|
| $\mathbb{W}$ | S   |
|              | V,  |
|              | RIF |
| m            | S F |

 $\mathbb{W}$ 

[9]

**@** 

@

G

Ŋ

S

C

(2)

SERIE SN28

#### Codice d'ordinazione Cursore SN22-40-60-130 SN22-40-140-210 SN22-40-220-290 200 280 360 290 370 450 SN22-60-120-210 SN22-60-200-290 SN22-60-280-370 SN22-60-360-450 SN22-80-100-210 SN22-80-180-290 SN22-80-260-370 SN22-80-340-450 SN22-80-420-530 450 530 340 SN22-80-500-610 SN22-130-130-290 SN22-130-210-370 SN22-130-290-450 450 610 SN22-130-370-530 SN22-130-450-610 130 SN22-130-610-770

Codice d'ordinazione | Cursore | Corsa | Guida

| Codice d'ordinazione | Cursore | Corsa | Guida |
|----------------------|---------|-------|-------|
| SN22-130-690-850     | 130     | 690   | 850   |
| SN22-130-770-930     | 130     | 770   | 930   |
| SN22-130-850-1010    | 130     | 850   | 1010  |
| SN22-210-210-450     | 210     | 210   | 450   |
| SN22-210-290-530     | 210     | 290   | 530   |
| SN22-210-370-610     | 210     | 370   | 610   |
| SN22-210-450-690     | 210     | 450   | 690   |
| SN22-210-530-770     | 210     | 530   | 770   |
| SN22-210-610-850     | 210     | 610   | 850   |
| SN22-210-690-930     | 210     | 690   | 930   |
| SN22-210-770-1010    | 210     | 770   | 1010  |
| SN22-210-930-1170    | 210     | 930   | 1170  |
| SN22-290-290-610     | 290     | 290   | 610   |
| SN22-290-370-690     | 290     | 370   | 690   |
| SN22-290-450-770     | 290     | 450   | 770   |
| SN22-290-530-850     | 290     | 530   | 850   |
| SN22-290-610-930     | 290     | 610   | 930   |
| SN22-290-690-1010    | 290     | 690   | 1010  |
| SN22-290-850-1170    | 290     | 850   | 1170  |
|                      |         |       |       |

| SN28-60-30-130    | 60  | 30  | 130  |
|-------------------|-----|-----|------|
| SN28-60-110-210   | 60  | 110 | 210  |
| SN28-60-190-290   | 60  | 190 | 290  |
| SN28-60-270-370   | 60  | 270 | 370  |
| SN28-60-350-450   | 60  | 350 | 450  |
| SN28-80-90-210    | 80  | 90  | 210  |
| SN28-80-170-290   | 80  | 170 | 290  |
| SN28-80-250-370   | 80  | 250 | 370  |
| SN28-80-330-450   | 80  | 330 | 450  |
| SN28-80-410-530   | 80  | 410 | 530  |
| SN28-80-490-610   | 80  | 490 | 610  |
| SN28-130-120-290  | 130 | 120 | 290  |
| SN28-130-200-370  | 130 | 200 | 370  |
| SN28-130-280-450  | 130 | 280 | 450  |
| SN28-130-360-530  | 130 | 360 | 530  |
| SN28-130-440-610  | 130 | 440 | 610  |
| SN28-130-520-690  | 130 | 520 | 690  |
| SN28-130-600-770  | 130 | 600 | 770  |
| SN28-130-680-850  | 130 | 680 | 850  |
| SN28-130-760-930  | 130 | 760 | 930  |
| SN28-130-840-1010 | 130 | 840 | 1010 |
| SN28-210-200-450  | 210 | 200 | 450  |
| SN28-210-280-530  | 210 | 280 | 530  |
| SN28-210-360-610  | 210 | 360 | 610  |
| SN28-210-440-690  | 210 | 440 | 690  |
| SN28-210-520-770  | 210 | 520 | 770  |
| SN28-210-600-850  | 210 | 600 | 850  |

| ONIDO 040 000 000  |     |      | Guida |
|--------------------|-----|------|-------|
| SN28-210-680-930   | 210 | 680  | 930   |
| SN28-210-760-1010  | 210 | 760  | 1010  |
| SN28-210-920-1170  | 210 | 920  | 1170  |
| SN28-210-1080-1330 | 210 | 1080 | 1330  |
| SN28-290-280-610   | 290 | 280  | 610   |
| SN28-290-360-690   | 290 | 360  | 690   |
| SN28-290-440-770   | 290 | 440  | 770   |
| SN28-290-520-850   | 290 | 520  | 850   |
| SN28-290-600-930   | 290 | 600  | 930   |
| SN28-290-680-1010  | 290 | 680  | 1010  |
| SN28-290-840-1170  | 290 | 840  | 1170  |
| SN28-290-1000-1330 | 290 | 1000 | 1330  |
| SN28-290-1160-1490 | 290 | 1160 | 1490  |
| SN28-370-360-770   | 370 | 360  | 770   |
| SN28-370-440-850   | 370 | 440  | 850   |
| SN28-370-520-930   | 370 | 520  | 930   |
| SN28-370-600-1010  | 370 | 600  | 1010  |
| SN28-370-760-1170  | 370 | 760  | 1170  |
| SN28-370-920-1330  | 370 | 920  | 1330  |
| SN28-370-1080-1490 | 370 | 1080 | 1490  |
| SN28-450-440-930   | 450 | 440  | 930   |
| SN28-450-520-1010  | 450 | 520  | 1010  |
| SN28-450-680-1170  | 450 | 680  | 1170  |
| SN28-450-840-1330  | 450 | 840  | 1330  |
| SN28-450-1000-1490 | 450 | 1000 | 1490  |
| SN28-450-1160-1650 | 450 | 1160 | 1650  |

| Codice d'ordinazione | Cursore | Corsa | Guida |
|----------------------|---------|-------|-------|
| SN35-130-110-290     | 130     | 110   | 290   |
| SN35-130-190-370     | 130     | 190   | 370   |
| SN35-130-270-450     | 130     | 270   | 450   |
| SN35-130-350-530     | 130     | 350   | 530   |
| SN35-130-430-610     | 130     | 430   | 610   |
| SN35-130-510-690     | 130     | 510   | 690   |
| SN35-130-590-770     | 130     | 590   | 770   |
| SN35-130-670-850     | 130     | 670   | 850   |
| SN35-130-750-930     | 130     | 750   | 930   |
| SN35-130-830-1010    | 130     | 830   | 1010  |
| SN35-210-190-450     | 210     | 190   | 450   |
| SN35-210-270-530     | 210     | 270   | 530   |
| SN35-210-350-610     | 210     | 350   | 610   |
| SN35-210-430-690     | 210     | 430   | 690   |
| SN35-210-510-770     | 210     | 510   | 770   |
| SN35-210-590-850     | 210     | 590   | 850   |
| SN35-210-670-930     | 210     | 670   | 930   |
| SN35-210-750-1010    | 210     | 750   | 1010  |
| SN35-210-910-1170    | 210     | 910   | 1170  |
| SN35-210-1070-1330   | 210     | 1070  | 1330  |
| SN35-210-1230-1490   | 210     | 1230  | 1490  |
| SN35-290-270-610     | 290     | 270   | 610   |
| SN35-290-350-690     | 290     | 350   | 690   |
| SN35-290-430-770     | 290     | 430   | 770   |
| SN35-290-510-850     | 290     | 510   | 850   |
| SN35-290-590-930     | 290     | 590   | 930   |
| SN35-290-670-1010    | 290     | 670   | 1010  |
| SN35-290-830-1170    | 290     | 830   | 1170  |

| Codice d'ordinazione | Cursore | Corsa | Guida |
|----------------------|---------|-------|-------|
| SN35-290-990-1330    | 290     | 990   | 1330  |
| SN35-290-1150-1490   | 290     | 1150  | 1490  |
| SN35-290-1310-1650   | 290     | 1310  | 1650  |
| SN35-370-350-770     | 370     | 350   | 770   |
| SN35-370-430-850     | 370     | 430   | 850   |
| SN35-370-510-930     | 370     | 510   | 930   |
| SN35-370-590-1010    | 370     | 590   | 1010  |
| SN35-370-750-1170    | 370     | 750   | 1170  |
| SN35-370-910-1330    | 370     | 910   | 1330  |
| SN35-370-1070-1490   | 370     | 1070  | 1490  |
| SN35-370-1230-1650   | 370     | 1230  | 1650  |
| SN35-450-430-930     | 450     | 430   | 930   |
| SN35-450-510-1010    | 450     | 510   | 1010  |
| SN35-450-670-1170    | 450     | 670   | 1170  |
| SN35-450-830-1330    | 450     | 830   | 1330  |
| SN35-450-990-1490    | 450     | 990   | 1490  |
| SN35-450-1150-1650   | 450     | 1150  | 1650  |
| SN35-450-1310-1810   | 450     | 1310  | 1810  |
| SN35-530-590-1170    | 530     | 590   | 1170  |
| SN35-530-750-1330    | 530     | 750   | 1330  |
| SN35-530-910-1490    | 530     | 910   | 1490  |
| SN35-530-1070-1650   | 530     | 1070  | 1650  |
| SN35-530-1230-1810   | 530     | 1230  | 1810  |
| SN35-610-670-1330    | 610     | 670   | 1330  |
| SN35-610-830-1490    | 610     | 830   | 1490  |
| SN35-610-990-1650    | 610     | 990   | 1650  |
| SN35-610-1150-1810   | 610     | 1150  | 1810  |

# **SERIE SN35**

# $\mathbb{W}$ W W E $\mathbb{M}$ []ľ (2) C Ŋ S G (2) ß f

# SERIE

SERIE SN63

#### SN43-130-270-450 SN43-130-350-530 510 SN43-130-430-610 SN43-130-510-690 SN43-130-590-770 850 750 SN43-130-670-850 **SN43** SN43-130-750-930 SN43-130-830-1010 530 SN43-210-190-450 SN43-210-270-530 SN43-210-350-610 350 210 210 510 770 SN43-210-430-690 SN43-210-510-770 SN43-210-590-850 SN43-210-670-930 SN43-210-750-1010 210 210 210 750 1010 SN43-210-910-1170 SN43-210-1070-1330 SN43-210-1230-1490 SN43-210-1390-1650 SN43-290-270-610 SN43-290-350-690 1390 290 290 290 290 290 350 690 770 850 510 SN43-290-430-770 SN43-290-510-850 SN43-290-590-930 SN43-290-670-1010 SN43-290-830-1170 SN43-290-990-1330 SN43-290-1150-1490 290 290 290 290

Codice d'ordinazione | Cursore | Corsa

SN43-130-110-290

SN43-130-190-370

Guida

990

1330

| Codice d'ordinazione | Cursore | Corsa | Guida |
|----------------------|---------|-------|-------|
| SN43-290-1310-1650   | 290     | 1310  | 1650  |
| SN43-290-1470-1810   | 290     | 1470  | 1810  |
| SN43-370-350-770     | 370     | 350   | 770   |
| SN43-370-430-850     | 370     | 430   | 850   |
| SN43-370-510-930     | 370     | 510   | 930   |
| SN43-370-590-1010    | 370     | 590   | 1010  |
| SN43-370-750-1170    | 370     | 750   | 1170  |
| SN43-370-910-1330    | 370     | 910   | 1330  |
| SN43-370-1070-1490   | 370     | 1070  | 1490  |
| SN43-370-1230-1650   | 370     | 1230  | 1650  |
| SN43-370-1390-1810   | 370     | 1390  | 1810  |
| SN43-450-430-930     | 450     | 430   | 930   |
| SN43-450-510-1010    | 450     | 510   | 1010  |
| SN43-450-670-1170    | 450     | 670   | 1170  |
| SN43-450-830-1330    | 450     | 830   | 1330  |
| SN43-450-990-1490    | 450     | 990   | 1490  |
| SN43-450-1150-1650   | 450     | 1150  | 1650  |
| SN43-450-1310-1810   | 450     | 1310  | 1810  |
| SN43-450-1470-1970   | 450     | 1470  | 1970  |
| SN43-530-590-1170    | 530     | 590   | 1170  |
| SN43-530-750-1330    | 530     | 750   | 1330  |
| SN43-530-910-1490    | 530     | 910   | 1490  |
| SN43-530-1070-1650   | 530     | 1070  | 1650  |
| SN43-530-1230-1810   | 530     | 1230  | 1810  |
| SN43-530-1390-1970   | 530     | 1390  | 1970  |
| SN43-610-670-1330    | 610     | 670   | 1330  |
| SN43-610-830-1490    | 610     | 830   | 1490  |
| SN43-610-990-1650    | 610     | 990   | 1650  |
| SN43-610-1150-1810   | 610     | 1150  | 1810  |
| SN43-610-1310-1970   | 610     | 1310  | 1970  |
|                      |         |       |       |

| Codice d'ordinazione | Cursore | Corsa | Guida |
|----------------------|---------|-------|-------|
| SN63-130-400-610     | 130     | 400   | 610   |
| SN63-130-480-690     | 130     | 480   | 690   |
| SN63-130-560-770     | 130     | 560   | 770   |
| SN63-130-640-850     | 130     | 640   | 850   |
| SN63-130-720-930     | 130     | 720   | 930   |
| SN63-130-800-1010    | 130     | 800   | 1010  |
| SN63-210-320-610     | 210     | 320   | 610   |
| SN63-210-400-690     | 210     | 400   | 690   |
| SN63-210-480-770     | 210     | 480   | 770   |
| SN63-210-560-850     | 210     | 560   | 850   |
| SN63-210-640-930     | 210     | 640   | 930   |
| SN63-210-720-1010    | 210     | 720   | 1010  |
| SN63-210-880-1170    | 210     | 880   | 1170  |
| SN63-210-1040-1330   | 210     | 1040  | 1330  |
| SN63-210-1200-1490   | 210     | 1200  | 1490  |
| SN63-210-1360-1650   | 210     | 1360  | 1650  |
| SN63-290-240-610     | 290     | 240   | 610   |
| SN63-290-320-690     | 290     | 320   | 690   |
| SN63-290-400-770     | 290     | 400   | 770   |
| SN63-290-480-850     | 290     | 480   | 850   |
| SN63-290-560-930     | 290     | 560   | 930   |
| SN63-290-640-1010    | 290     | 640   | 1010  |
| SN63-290-800-1170    | 290     | 800   | 1170  |
| SN63-290-960-1330    | 290     | 960   | 1330  |
| SN63-290-1120-1490   | 290     | 1120  | 1490  |
| SN63-290-1280-1650   | 290     | 1280  | 1650  |
| SN63-370-320-770     | 370     | 320   | 770   |

| Codice d'ordinazione | Cursore | Corsa | Guida |
|----------------------|---------|-------|-------|
| SN63-370-400-850     | 370     | 400   | 850   |
| SN63-370-480-930     | 370     | 480   | 930   |
| SN63-370-560-1010    | 370     | 560   | 1010  |
| SN63-370-720-1170    | 370     | 720   | 1170  |
| SN63-370-880-1330    | 370     | 880   | 1330  |
| SN63-370-1040-1490   | 370     | 1040  | 1490  |
| SN63-370-1200-1650   | 370     | 1200  | 1650  |
| SN63-370-1360-1810   | 370     | 1360  | 1810  |
| SN63-450-400-930     | 450     | 400   | 930   |
| SN63-450-480-1010    | 450     | 480   | 1010  |
| SN63-450-640-1170    | 450     | 640   | 1170  |
| SN63-450-800-1330    | 450     | 800   | 1330  |
| SN63-450-960-1490    | 450     | 960   | 1490  |
| SN63-450-1120-1650   | 450     | 1120  | 1650  |
| SN63-450-1280-1810   | 450     | 1280  | 1810  |
| SN63-530-560-1170    | 530     | 560   | 1170  |
| SN63-530-720-1330    | 530     | 720   | 1330  |
| SN63-530-880-1490    | 530     | 880   | 1490  |
| SN63-530-1040-1650   | 530     | 1040  | 1650  |
| SN63-530-1200-1810   | 530     | 1200  | 1810  |
| SN63-530-1360-1970   | 530     | 1360  | 1970  |
| SN63-610-640-1330    | 610     | 640   | 1330  |
| SN63-610-800-1490    | 610     | 800   | 1490  |
| SN63-610-960-1650    | 610     | 960   | 1650  |
| SN63-610-1120-1810   | 610     | 1120  | 1810  |
| SN63-610-1280-1970   | 610     | 1280  | 1970  |

# VERIFICAAL CARICO STATICO

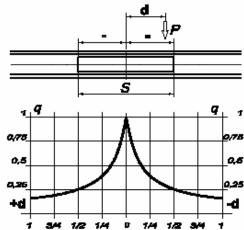
Le capacità di carico delle guide lineari serie SN sono riportate nelle tabelle delle pagine precedenti per ogni lunghezza di cursore. In pratica, i carichi ed i momenti si considerano applicati in modo centrato rispetto al cursore (per carichi non centrati, vedi paragrafo successivo in questa pagina). E' **importante** ricordare che i valori dei carichi e dei momenti sono indipendenti dalla posizione del cursore durante la corsa. Nella verifica statica, il carico radiale C  $_{0rad}$ , il carico assiale  $C_{0ax}$  ed i momenti  $M_x$ ,  $M_y$ ,  $M_z$ , indicano il valore massimo ammissibile del carico, oltre il quale si pregiudica la qualità del rotolamento e la resistenza meccanica complessiva, NON indicano per cui carichi di rottura. La verifica al carico statico va effettuata determinando il coefficiente di sicurezza z che rispetti i valori indicati nella tabella sottostante, dipendenti dal livello di conoscenza dei carichi e dalle condizioni di esercizio:

| Assenza di urti e vibrazioni; inversione dolce e di bassa frequenza; alta precisione di montaggio; nessun cedimento elastico; | 1 - 1.5 |
|-------------------------------------------------------------------------------------------------------------------------------|---------|
| Normali condizioni di montaggio;                                                                                              | 1.5 - 2 |
| Urti e vibrazioni; cedimenti elastici notevoli; alta frequenza di inversione;                                                 | 2 - 3.5 |

Occorre sempre verificare che il carico esterno P o il momento esterno M risultino inferiori o uguali alle capacità di carico divise per il coefficiente di sicurezza z:

$$\frac{P}{C_{0rad}} \frac{1}{Z}$$
 o  $\frac{P}{C_{0ax}} \frac{1}{Z}$  o  $\frac{M}{M_x(o M_y o M_z)} \frac{1}{Z}$  [1] se P è solo se P è solo se sono presenti radiale assiale solo momenti

dove **P** è il carico esterno applicato, in newton e **M** è il momento esterno applicato, in Nm. Ciò è valido se il carico esterno è costituito da una sola forza o da un solo momento. Nel caso frequente di contemporanea presenza di forze e momenti, è necessario verificare che la sommatoria del contributo di ciascuna forza o momento applicato soddisfi la seguente relazione:


$$\frac{P_{rad}}{C_{Orad}} + \frac{P_{ax}}{C_{Oax}} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z} \leqslant \frac{1}{z} \quad [2]$$

 $\mathsf{P}_{\mathsf{rad}}$ ,  $\mathsf{P}_{\mathsf{ax}}$  sono le risultanti radiale ed assiale dei carichi esterni applicati, in newton;

 $\rm M_1,\,M_2,\,M_3\,$  sono i momenti risultanti esterni, in Nm;

## Carico esterno P in posizione non centrata:

Nel caso di carico non centrato sul cursore, si dovrà tener conto della diversa distribuzione delle sollecitazioni sulle sfere e della conseguente riduzione della capacità di carico  $C_{0_{\text{red}}}$ . Tale riduzione è data dal grafico a lato, in funzione della distanza  $\mathbf{d}$  tra il centro del cursore e il punto di applicazione del carico esterno (dove  $\mathbf{q}$  è il coefficiente di "posizione" e la distanza  $\mathbf{d}$  è espressa in frazioni di lunghezza del cursore  $\mathbf{S}$ ).



Il carico esterno P applicabile in funzione di d risulta:

$$P=q$$
  $C_{0rad}$  se il carico esterno P è radiale  $P=q$   $C_{0ax}$  se il carico esterno P è assiale

Per eseguire la verifica del carico statico e la verifica della durata (vedi pag. C13), nelle formule [1], [2], [3], in luogo di  $P_{\rm rad}$ ,  $P_{\rm ax}$ , è necessario introdurre i corrispondenti valori equivalenti calcolati nel seguente modo:

$$P_{\text{rad}} = \frac{P}{q}$$
 se il carico esterno P è radiale

$$P_{\text{ex}} = \frac{P}{a}$$
 se il carico esterno P è assiale

W

 $\mathbb{W}$ 

 $\mathbb{W}_{0}$ 

Z

ľňňl

[9]

 $\bigcirc$ 

0

(g)

(C)

Ŋ

B

M

(2)

f

(0)

# VERIFICA DELLA DURATA

La durata di un cuscinetto lineare è influenzata da numerosi fattori, quali il carico applicato, la velocità di funzionamento, la precisione di montaggio, urti e vibrazioni, temperatura di esercizio, ambiente di lavoro, lubrificazione. La stessa definizione di durata è oggetto di interpretazione; la durata in pratica può essere meglio definita come messa "fuori uso" del cuscinetto per distruzione od eccessiva usura di qualche sua parte. Questo fattore può essere messo in conto introducendo un coefficiente correttivo (f, nella formula sottostante).

La durata verrà quindi calcolata in modo che venga soddisfatta la seguente relazione:

$$L_{Km} = 100 \cdot \left( \frac{C}{P_o} \cdot \frac{1}{f_i} \right)^3$$

dove:

 $\mathbb{W}$ 

 $\sqrt{N}$ 

\V<sub>\</sub>V/

E

 $\mathbb{M}$ 

[D

(0)

(0)

(g)

(2)

(3

Ŋ

(6)

M

(2)

(0)

ß

L<sub>km</sub>è la durata calcolata, in km;

C e il fattore di carico dinamico, in N, ed equivale numericamente al valore della capacità di carico C<sub>0rad</sub> (vedi pag. C8-C11);

P è il carico equivalente applicato, in N; f, è il coefficiente di impiego (vedi tabelli è il coefficiente di impiego (vedi tabella sotto per i valori da utilizzare).

| Assenza di urti e vibrazioni; inversione dolce e di bassa frequenza; ambiente di lavoro pulito; bassa velocità (< 0,5 m/s); | 1 - 1.5 |
|-----------------------------------------------------------------------------------------------------------------------------|---------|
| Leggere vibrazioni; medie velocità (tra 0,5 e 0,7 m/s) e frequenze d'inversione;                                            | 1.5 - 2 |
| Urti e vibrazioni; alte velocità (> 0,7 m/s ) e frequenze di inversione; ambiente di lavoro fortemente inquinato;           | 2 - 3.5 |

Nel caso di carico esterno P uguale alla capacità di carico radiale C <sub>0rad</sub> (che ovviamente non può mai essere superata), la durata risulta uguale a 100 km di percorrenza in condizioni ideali (f<sub>i</sub>=1). Se è presente un solo carico esterno, P risulta ovviamente P<sub>o</sub>=P.

Se il carico esterno è costituito da più forze o momenti agenti contemporaneamente è necessario calcolare il carico esterno equivalente secondo la formula:

$$P_o = P_{rad} + \left(\frac{P_{ax}}{C_{0ax}} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}\right) \cdot C_{0ad}$$
 [3]

# ACCOPPIAMENTI GUIDE/CURSORI

Le guide lineari serie SN sono normalmente assemblate con accoppiamento G1, ovvero in modo tale che tra il cursore e la guida ci sia un tipo di accoppiamento che assicuri la massima scorrevolezza. Per qualsiasi ulteriore informazione, contattare il nostro Servizio Tecnico.

# COEFFICIENTE DI ATTRITO

In condizioni di corretta lubrificazione, con un montaggio su strutture piane, rigide e, nel caso di una coppia di guide, parallele, il coefficiente d'attrito è uguale od inferiore a 0,01. Tale valore può variare in particolari situazioni di montaggio (vedi il paragrafo CONSIGLI APPLICATIVI alla pagina seguente).

# PRECISIONE LINEARE

Con la guida fissata con tutte le viti ad una struttura supposta piana e rigida, ed avendo realizzato sulla medesima struttura i fori di fissaggio su una linea retta, la precisione lineare della traiettoria seguita dal cursore rispetto ad un riferimento esterno fisso soddisfa la seguente relazione:

$$//=\frac{\sqrt{H}}{300}$$
 (mm)

dove H è la corsa del cursore.

# VELOCITÀ

Le quide lineari serie SN possono essere generalmente utilizzate per velocità fino a 0.8 m/s. Si sconsiglia l'utilizzo dei tipi con gabbie a sfere particolarmente lunghe in presenza di elevate frequenze di movimento e quindi forti accelerazioni durante l'inversione del moto, a causa dei possibili problemi di sfasamento delle gabbie stesse (vedi il paragrafo CONSIGLI APPLICATIVI alla pagina seguente).

#### $\mathbb{W}$ CONSIGLI APPLICATIVI Per il principio costruttivo delle guide lineari a sfere serie SN, la gabbia a sfere interposta tra guida e cursore, durante il movimento del cursore rispetto alla guida, considerata fissa, si muove compiendo una corsa pari alla metà di quella percorsa dal cursore. La corsa termina quando i \V<sub>\</sub>V/ cursore all'interno della gabbia tocca le alette ripiegate della stessa. La gabbia normalmente s muove in sincronismo per effetto del rotolamento delle sfere sulle piste di guida e cursore. Talvolt però le sfere invece di rotolare strisciano e possono far perdere il sincronismo con il movimento E del cursore, anticipando il contatto della gabbia con i fine corsa, limitando la corsa stessa. La corsa teorica può essere comunque ripristinata facendo strisciare la gabbia a sfere fino al contemporaneo contatto dei perni di fine corsa di guida e cursore ("rifasamento"). Durante il ľňňl rifasamento, lo strisciamento provoca un forte aumento della resistenza allo scorrimento, tanto più alta quanto più alto è il carico applicato alla guida. Le cause che possono provocare lo strisciamento della gabbia sono imprecisioni di montaggio (D) dinamica del movimento, valore e variazione del carico. Al fine di minimizzare gli inconvenient derivanti dallo sfasamento della gabbia è opportuno seguire i consigli applicativi di seguito (0)indicati. La corsa da realizzare deve essere invariabile per tutto il ciclo di lavoro e preferibilmente la pi vicina possibile alla corsa nominale della guida (calcolata come indicato a pag. C8). In caso d applicazione a corsa variabile è importante prevedere la possibilità di rifasare la gabbia, dimensionando l'azionamento in modo da poter sopperire alla occasionale maggiore forza di trazione, che dovrà essere calcolata tenendo conto di un coefficente d'attrito pari a circa 0,1. Una soluzione alternativa, già adottata da vari utilizzatori, è rappresentata dalla previsione nel ciclo di lavoro di un movimento periodico senza carico che sfrutti la massima corsa permessa (0)dalla quida, in modo da prevenire l'eventuale sfasamento della gabbia o comunque da effettuarni l"automatico' rifasamento. (d) Nel caso di impiego di una coppia di guide montate in parallelo, l'eventuale errore di parallelismo di montaggio e di planarità delle superfici di appoggio possono peggiorare il fenomeno dello sfasamento e la conseguente azione di rifasamento. (2) Nel caso si prevedano in fase di progetto circostanze di questo genere è consigliabile adottare cuscinetti lineari con gioco maggiorato Le guide SN possono essere utilizzate soltanto per movimenti orizzontali. Quando si impiegano cuscinetti lineari con cursori multipli "indipendenti" o "sincronizzati" e cor più di due cursori per guida, in caso di incertezza sulla precisione dei piani di fissaggio di guida (C) e cursori, è meglio prevedere guide con gioco maggiorato. Per maggiori informazioni, contattare sempre il nostro Servizio Tecnico. Ŋ TEMPERATURA E' consentito l'utilizzo dei prodotti SN in ambienti con temperatura fino a 170 °C (oltre i 130°C € necessario utilizzare un grasso lubrificante per alte temperature). Per impieghi a temperature (6 superiori consultate il nostro Servizio Tecnico. PROTEZIONE ANTICORROSIVA Tutti gli elementi del cuscinetto lineare a sfere (cursore, gabbia, guida) sono protetti dalla M corrosione mediante zincatura elettrolitica BIANCA a norme ISO 2081. Su richiesta, sono realizzabili anche altri trattamenti superficiali. Contattare il nostro Servizio Tecnico per maggior (2) informazioni. LUBRIFICAZIONE f

E' fortemente condizionata dall'ambiente di lavoro. In condizioni normali è necessario preveder∈ un reingrassaggio ogni 100 km di percorso, con grasso al sapone di litio, di consistenza media del tipo normalmente utilizzato per i cuscinetti volventi.

Documento in formato PDF dal sito www.emporiodelcuscinetto.it

(0)

ß

Emporio del Cuscinetto

Viale del Lavoro, 32 - 35020 - Ponte San Nicolò - Padova - Italy **Tel.** +39.049.89.61.481 r.a. - **Fax** +39.049.89.60.166